"Oddball SGD": Novelty Driven Stochastic Gradient Descent for Training Deep Neural Networks

نویسنده

  • Andrew J. R. Simpson
چکیده

Stochastic Gradient Descent (SGD) is arguably the most popular of the machine learning methods applied to training deep neural networks (DNN) today. It has recently been demonstrated that SGD can be statistically biased so that certain elements of the training set are learned more rapidly than others. In this article, we place SGD into a feedback loop whereby the probability of selection is proportional to error magnitude. This provides a novelty-driven oddball SGD process that learns more rapidly than traditional SGD by prioritising those elements of the training set with the largest novelty (error). In our DNN example, oddball SGD trains some 50x faster than regular SGD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Learning in a Deep Neural Network via "Oddball" Stochastic Gradient Descent

When training deep neural networks, it is typically assumed that the training examples are uniformly difficult to learn. Or, to restate, it is assumed that the training error will be uniformly distributed across the training examples. Based on these assumptions, each training example is used an equal number of times. However, this assumption may not be valid in many cases. “Oddball SGD” (novelt...

متن کامل

Tochastic Gradient Descent

Mini-batch based Stochastic Gradient Descent(SGD) has been widely used to train deep neural networks efficiently. In this paper, we design a general framework to automatically and adaptively select training data for SGD. The framework is based on neural networks and we call it Neural Data Filter (NDF). In Neural Data Filter, the whole training process of the original neural network is monitored...

متن کامل

A predictor-corrector method for the training of deep neural networks

The training of deep neural nets is expensive. We present a predictorcorrectormethod for the training of deep neural nets. It alternates a predictor pass with a corrector pass using stochastic gradient descent with backpropagation such that there is no loss in validation accuracy. No special modifications to SGD with backpropagation is required by this methodology. Our experiments showed a time...

متن کامل

Parallel Dither and Dropout for Regularising Deep Neural Networks

Effective regularisation during training can mean the difference between success and failure for deep neural networks. Recently, dither has been suggested as alternative to dropout for regularisation during batch-averaged stochastic gradient descent (SGD). In this article, we show that these methods fail without batch averaging and we introduce a new, parallel regularisation method that may be ...

متن کامل

When Does Stochastic Gradient Algorithm Work Well?

In this paper, we consider a general stochastic optimization problem which is often at the core of supervised learning, such as deep learning and linear classification. We consider a standard stochastic gradient descent (SGD) method with a fixed, large step size and propose a novel assumption on the objective function, under which this method has the improved convergence rates (to a neighborhoo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1509.05765  شماره 

صفحات  -

تاریخ انتشار 2015